Chemistry Worksheet - Wavelength, frequency, & energy of electromagnetic waves.

Show ALL equations, work, units, and significant figures in performing the following calculations. Identify the type of radiation in each problem. (Use your electromagnetic spectrum)

$$C = 3.00 \times 10^8 \text{ m/s}$$

$$h = 6.626 \ 2 \times 10^{-34} \ J-s \ (or \ J/Hz)$$

1. What is the wavelength of a 2.99 Hz wave?

2. What is the frequency of a 7.43×10^{-5} m wave?

$$C = f$$

$$3.00 \times 10^{8} \text{ m} = f (7.43 \times 10^{-5} \text{ m})$$

$$0.404 \times 10^{13} = f$$
3. What is the wavelength of a 4.34 × 10¹⁵ /s wave?

$$C = f$$

 $3.00 \times 10^8 \text{ m} = 4.34 \times 10^{15} / \text{s}$ $)$
 $0.691 \times 10^{-7} \text{ m} =)$
 $0.91 \times 10^{-8} \text{ m} =)$

4. What is the frequency of a
$$5.6 \times 10^{10} \, \mu m$$
 wave? $(\mu m \times 10^{-6} = m)$

5.6 × 10 12 $\mu m = 5.6 \times 10^{10} \, m = 10^$

5. What is the energy of a 7.66×10^{14} Hz wave? $E = h + 10^{14}$

$$E = 6.636 \times 10^{-34} J - 8 (7.66 \times 10^{14/8})$$

$$E = 50.755 \times 10^{-20} J$$

$$= 50.8 \times 10^{-20} J$$

$$= 5.08 \times 10^{-18} J$$

6. What is the frequency of a wave carrying 8.35×10^{-18} J of energy?

7. What is the frequency of a 1.78×10^{-15} J wave?

8. What is the wavelength of a 7.65 x
$$10^{-17}$$
 J wave?
 $E = kf$
 $7.65 \times 10^{-17} J = 6.626 \times 10^{-34} JS \cdot f$ $8.00 \times 10^{8} MIS = 1.15 \times 10^{17} S \cdot h$
 $1.15 \times 10^{17} S = f$ $26 \times 10^{18} MIS = h$

9. What is the wavelength of a 1.32 \times 10⁻⁶ J wave?

E=hf or E=h
$$\frac{a}{3}$$

1.32×10-bJ = (6.626×10^{-34}) (3.00×10⁸45)

1.32×10-bJ. $\lambda = (6.626 \times 10^{-34})$ (3.00×10⁸45)

1.32×10-bJ. $\lambda = (9.9 \times 10^{-36})$. m

 $\lambda = (9.9 \times 10^{-36})$. m